3 A pr 2 00 3 Picard groups in Poisson geometry

نویسندگان

  • Henrique Bursztyn
  • Alan Weinstein
چکیده

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, for rings (the origin of the notion of Picard group), Lie groupoids, and symplectic groupoids. DEDICATED TO PIERRE CARTIER

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J un 2 00 3 Picard groups in Poisson geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

A pr 2 00 1 ON A GENERIC INVERSE DIFFERENTIAL GALOIS PROBLEM FOR GL

In this paper we construct a generic Picard-Vessiot extension for the general linear groups. In the case when the differential base field has finite transcen-dence degree over its field of constants we provide necessary and sufficient conditions for solving the inverse differential Galois problem for this groups via specialization from our generic extension.

متن کامل

ar X iv : 0 70 5 . 34 40 v 3 [ he p - th ] 2 5 A pr 2 00 8 Semidensities , Second - Class Constraints and Conversion in Anti - Poisson Geometry

We consider Khudaverdian's geometric version of a Batalin-Vilkovisky (BV) operator ∆ E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order differential operator) is that it sends semi-densities to semidensities. We find a local formula for the ∆ E operator in arbitrary coordinates. As an imp...

متن کامل

A pr 2 00 8 K 3 surfaces with Picard rank 20

We determine all complex K3 surfaces with Picard rank 20 over Q. Here the NéronSeveri group has rank 20 and is generated by divisors which are defined over Q. Our proof uses modularity, the Artin-Tate conjecture and class group theory. With different techniques, the result has been established by Elkies to show that Mordell-Weil rank 18 over Q is impossible for an elliptic K3 surface. We also a...

متن کامل

Picard Groups in Poisson Geometry

We study isomorphism classes of symplectic dual pairs P ← S → P , where P is an integrable Poisson manifold, S is symplectic, and the two maps are complete, surjective Poisson submersions with connected and simply-connected fibres. For fixed P , these Morita self-equivalences of P form a group Pic(P ) under a natural “tensor product” operation. Variants of this construction are also studied, fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003